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Abstract: LNT is the major biologically active substance extracted from Lentinus edodes (L. edodes).
Although functional and pharmacological studies have demonstrated that LNT has multiple benefits
for animals and humans, the safety assessment is far from sufficient. To evaluate the potential safety
risk, larval zebrafish were continuously exposed to varying concentrations of LNT for 120 h. The 96 h
LC50 of LNT was determined to be 1228 µg/mL, and morphological defects including short body
length, reduced eye and swim bladder sizes and yolk sac edema were observed. In addition, LNT
exposure significantly reduced the blood flow velocity and locomotor activity of larval zebrafish. The
biochemical parameters were also affected, showing reduced glucose, triglyceride and cholesterol
levels in zebrafish larvae after being exposed to LNT. Correspondingly, the genes involved in glucose
and lipid metabolism were disrupted. In conclusion, the present study demonstrates the adverse
potential of high concentrations of LNT on the development of zebrafish larvae in the early life stage.
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1. Introduction

Lentinan (LNT), a neutral β-glucan, consisting of repeated β-(1,6) branched β-(1,3)-
glucan units, is the main biologically active compound that is fully extracted from Lenti-
nus edodes (L. edodes) [1,2]. The beneficial effects of LNT and other β-glucans have been
widely studied using modern pharmacological and biological strategies, revealing that
β-glucans possess multiple functions. The researchers from Japan first demonstrated the
anti-tumor activity of LNT in the 1970s [3–5]. Further positive biological activities were
uncovered, including anti-oxidative activity [6,7], antibacterial activity [8], anti-virus activ-
ity [9], anti-inflammation activity [10], reno-protective activity [11], and most importantly,
immunomodulatory activity [12–15]. Interestingly, the biological activities of β-glucans
have been shown in both vertebrates, such as humans, chickens, dogs, and fishes [16–19],
and invertebrates, like shrimp and drosophila [20,21].

Because of their functions and taste, β-glucans are widely used as medicine, antimi-
crobial agents, dietary supplements and nutrition enhancers. For instance, two kinds of
β-glucans, LNT and krestin, have been approved as anti-tumor drugs for gastric cancer
treatment in Japan [22]. Extensive studies have been conducted to elucidate the mecha-
nism underlying the anti-tumor activity of LNT. Two chief mechanisms have identified:
(1) enhancing the immunity against tumors, including cellular and humoral immuni-
ties [23,24]; (2) preventing cancer cell proliferation or metastasis through direct induction
of cell apoptosis and death [25]. Besides the applications in cancer therapy, LNT has been
approved as a safe food ingredient in the European Union and used in various products,
such as dietary supplements, processed foods and drinks [26]. The efficacy and effec-
tiveness studies carried out in animals and humans partially support the safety of LNT,
however, only limited value was provided. The LD50 values of LNT were determined to
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be 250–500 mg/kg and >2500 mg/kg in mice (intravenously) and rats (intraperitoneally,
subcutaneously and orally), respectively [27]. In a 6-month study, different doses of LNT
(0.01, 0.1, 1, 10 mg/kg/day) were intravenously injected into the tail vein of rats to as-
sess the chronic toxicity of LNT. All treated groups showed different degrees of arteritis,
pulmonary hemorrhage and hypospermatogenesis, and the maximum no-effect level was
lower than 0.01 mg/kg/day [28]. Based on this result and considering the direct cellular
toxicity on cancer cells and the anti-bacterial effect [8,25,28], LNT may exert adverse effects
on receivers. Thus, the health risk of LNT should be assessed adequately in different species
and the underlying mechanism should be elucidated.

Before being administered to humans, the safety assessments of medicines, food
ingredients or chemicals are essential. Currently, most of the toxicity assays are using
animals, especially rodents. To improve animal welfare, test methods meeting the 3R
principles (replacement, reduction, and refinement) are encouraged [29,30]. Zebrafish
are becoming popular as an alternative animal model in safety assessment because of
their particular advantages that partially obey the 3R principles. For instance, zebrafish
are lower sentient vertebrates compared with rodents, which means the suffering during
the experiments would be on a lower degree. The use of zebrafish for early screening
could largely reduce the number of rodents in the subsequent research phase. Moreover,
the fecundity of zebrafish is high and the embryos can be handled easily in vitro, which
significantly increases the efficiency of experiments [31]. Zebrafish larva is a prominent
model organism used in developmental biology due to its transparency, which allows
easy staging under optical microscopy. A large number of studies have used zebrafish
larvae to evaluate the developmental toxicity of chemicals [32–34]. More importantly, since
the genome of zebrafish has been sequenced [35], the mechanism underlying the toxic
phenotype is able to be elucidated at the molecular level.

In the present study, larval zebrafish were used to investigate the impacts of high
concentrations of LNT on the developmental process in the early life stage. The hatching
rate at 72 and 96 h post fertilization (hpf) and the median lethal concentration (LC50)
at 96 hpf were determined. Furthermore, the morphological changes, heartbeat, blood
flow velocity and locomotor activity of larval zebrafish that were continuously exposed
to varying concentrations of LNT were studied at 120 hpf. In addition, the biochemical
indexes reflecting energy metabolism were evaluated. To reveal the underlying mechanism,
the genes involved in glucose and lipid metabolism were quantified at the transcriptional
level. This study evaluated the potential adverse effects of LNT by using larval zebrafish
for the first time. Moreover, these findings provided evidence that high concentrations of
LNT would alter the energy metabolism process.

2. Materials and Methods
2.1. Research Compound

Lentinan (LNT, CAS NO. 37339-90-5, purity ≥98%) was obtained from YuanYe Bio-
technology (Shanghai, China). The LNT was dissolved in E3 medium at 100 mg/mL and
stored at −20 ◦C for further use.

2.2. Zebrafish Maintenance and Embryo Collection

Wild-type AB strain zebrafish were housed in a light- and temperature-controlled
aquaculture facility with a light/dark photoperiod of 14:10 h. The fish were maintained in
fish water at 28 ◦C (0.2% Instant Ocean Salt in deionized water, pH 6.9–7.2, conductivity
480–510 µS/cm and hardness 53.7–71.6 mg/L CaCO3) and were fed with live brine shrimp
twice a day. Male and female zebrafish were set up for natural mating. All healthy
embryos from different pairs of zebrafish were mixed and washed with E3 medium for
further experiments. The experiment was performed following the ethical guideline of
Experimental Animal Ethics Committee of Hunter Biotechnology, Inc. (AAALAC 001458).
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2.3. Embryo Acute Toxicity Test

Fertilized eggs before 16 cell-stage were selected and randomly transferred into the
six-well plates with 30 embryos per well, containing 3 mL of E3 medium. The embryos
were exposed to series concentrations of LNT (600, 800, 1000, 1200, 1400, 1600, 1800, 2000,
and 4000 µg/mL) continuously for 96 h. The media were refreshed every day. During the
exposure period, the lethality was recorded according to the OECD guidelines [36], and
the dead embryos were removed. The number of dead larvae at each concentration was
plotted and a concentration–response curve was fitted. The LC50 value was calculated
from independent experiments performed in triplicate. According to the 96 h LC50 value,
four LNT concentrations (30, 100, 300, and 900 µg/mL) were set for further evaluation.

2.4. Pathological Alteration Analyses

The embryos at 6 hpf were exposed to series concentrations of LNT (30, 100, 300,
and 900 µg/mL), and larval zebrafish at 120 hpf were collected. The numbers of hatched
embryos at 72 and 96 hpf were recorded. The hatching rate was summarized from three
independent assays. For morphological observation, the zebrafish larvae were anesthetized
and images were captured using optical microscopy (SZX7, OLYMPUS, Japan). The body
length, swim bladder size, eye area, and yolk sac area were analyzed using NIS-ElementsD
3.20 software (Nikon, Japan). The relative values were calculated by the following formula:
relative values = individual values/mean value of control group. The zebrafish larvae were
not anesthetized and the heartbeats in 20 s were recorded manually. The blood flow velocity
was calculated using MicroZebraLab (Viewpoint, Lyon, France). For behavioral analyses,
the zebrafish larvae were assigned individually into a 96-well microplate. After being
acclimated for 5 min under the lighting conditions, the swimming ability in the light/dark
cycle (5 min/5 min) was recorded for 25 min using Zebrabox (ViewPoint, Lyon, France).

2.5. Biochemical Indexes Determination

A total of 30 zebrafish larvae at 120 hpf were homogenized with 60 µL of ice-cold
PBS using a homogenizer, centrifuged at 5000× g for 10 min at 4 ◦C, and the supernatant
was collected for further analyses. The contents of Glucose (Glu), triglyceride (TG), and
total cholesterol (T-CHO) were measured using the commercial kits obtained from Nanjing
Jiancheng Institute of Biotechnology (Nanjing, China) according to the manufactures’ in-
structions. Briefly, 2.5 µL of supernatant from each sample was used to measure the glucose
content by using the glucose oxidase method (GOD). Similarly, 2.5 µL of supernatant from
each sample was used to measure the triglyceride content by using the GPO-PAP method
and 2.5 µL of supernatant from each sample was used to measure the total cholesterol
content by using the COD-PAP method.

2.6. Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) Analyses

Total RNA was isolated from 30 zebrafish larvae at 120 hpf using RNA-easy Isolation
Reagent (Vazyme Biotech, Nanjing, China). Briefly, 30 larvae were homogenized with
300 µL of lysis buffer using a homogenizer, centrifuged at 12,000× g for 15 min, and the
supernatant was transferred to a new tube. The same volume of isopropanol was added
to precipitate the RNA. After being centrifuged at 12,000× g for 10 min, the pellet was
washed with 75% ethanol. The RNA was dissolved with RNase-free ddH2O and the purity
was checked using Nano Drop 2000 (Thermo Scientific, WALTHAM, MA, USA). A total of
2 µg RNA was reverse transcribed into cDNA by using FastKing RT kit (Tiangen Biotech,
Beijing, China). Gene expressions were detected by qRT-PCR using iTaq Universal SYBR
Green (Bio-Rad, Hercules, CA, USA) on the CFX Connect Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA). The primer sequences were referred to other studies and
listed in Table S1 [37–41]. The relative expression levels of the genes were normalized to
actb2, and calculated using the 2−∆∆CT method.
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2.7. Statistical Analysis

All data in this study were presented as mean ± standard error (SE), and analyzed by
one-way analysis of variance (ANOVA) followed by the Dunnett’s multiple comparisons
test using GraphPad Prism 7. Compared with the control group, p < 0.05 was considered
significant.

3. Results
3.1. Lethal Effect and Developmental Toxicity of LNT in Larval Zebrafish

To investigate the lethal effect of LNT, fertilized eggs were exposed to series concen-
trations of LNT for 96 h. By analyzing the fitting curve shown in Figure 1A, the 96 h LC50
value of LNT was determined to be 1228 µg/mL.
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Figure 1. Lethal effect and developmental toxicity of LNT in larval zebrafish. (A) Fitting curve of 96 h
LC50 (each group n = 30, triplicate); (B) hatching rate at 72 and 96 hpf (each group n = 30, triplicate);
(C) representative images of larvae at 120 hpf; (D) body length of larvae at 120 hpf (each group
n = 20); (E) heartbeats of larvae at 120 hpf (each group n = 10); (F) blood flow velocity of larvae at
120 hpf (each group n = 10). All data were compared with the control group, *, p < 0.05; **, p < 0.01;
***, p < 0.001.

Based on the LC50 value, LNT at concentrations of 30, 100, 300, and 900 µg/mL (1/36,
1/12, 1/4, and 3/4 LC50, respectively) were set for further evaluations. As shown in
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Figure 1B, the hatching rates at 72 h and 96 h were not affected by LNT treatment, even
in the 900 µg/mL group. Except for yolk sac edema, no obvious deformity was observed
in all LNT treated groups (Figure 1C). Nevertheless, the body length of zebrafish larvae
decreased significantly in a dose-dependent manner (Figure 1D), suggesting that LNT
exposure inhibited the growth of individuals. Interestingly, the blood flow velocity was
remarkably reduced in all LNT treated groups, without any effect on the heartbeats in 20 s
(Figure 1E,F).

3.2. LNT Induced Pathological Alterations in Larval Zebrafish

To further assess the adverse effects of LNT exposure on the development of larval
zebrafish, more detailed characteristics, including eye and swim bladder sizes and yolk
sac area, were quantified (Figure 2A). Inflated swim bladders (Figure 2A, blue dotted
lines) were observed in the control group, while the sizes of the swim bladders were dose-
dependently decreased in the LNT treated groups (Figure 2B). Notably, almost 50% of the
zebrafish larvae completely lost the inflated swim bladders in the 900 µg/mL group. In
addition, the eyes (Figure 2A, red dotted lines) in the 900 µg/mL group were significantly
smaller than those in the control group (Figure 2C). Another obvious deformity observed
was yolk sac edema. As shown in Figure 2D, the yolk sac area clearly increased along with
the concentrations of LNT. All these morphological changes, including body length, eye
and swim bladder sizes and yolk sac area, demonstrate that high concentrations of LNT
inhibited the normal development of the larval zebrafish.
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Figure 2. LNT-induced pathological alterations in larval zebrafish. (A) Representative images of
larvae at 120 hpf (red dotted line: eyes; blue dotted line: swim bladder; yellow dotted line: yolk sac);
(B) relative swim bladder area; (C) relative eye area; (D) relative yolk sac area. Each group n = 20. All
data were compared with the control group, *, p < 0.05; ***, p < 0.001.

3.3. Effects of LNT Exposure on the Locomotor Activity in Larval Zebrafish

The impact of LNT on locomotor activity in larval zebrafish is shown in Figure 3.
A light/dark rhythm was observed in the control group and all LNT treated groups
(Figure 3A), suggesting that LNT exposure didn’t disrupt the response of zebrafish larvae
to light and dark stimulation. Whereas, the total distance moved during the light and
dark phases by the zebrafish larvae in the LNT treated groups decreased remarkably
(Figure 3B,C).
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Figure 3. Effects of LNT exposure on the locomotor activity in larval zebrafish. (A) Total distance
moved by zebrafish larvae in 25 min; (B) distance moved by zebrafish larvae in one min in the dark
cycle; (C) distance moved by zebrafish larvae in one min in the light cycle. Each group n = 12. All data
were compared with the control group, **, p < 0.01; ***, p < 0.001.

3.4. Effects of LNT Exposure on the Glu, TG and T-CHO Levels in Larval Zebrafish

As shown in Figure 4, the contents of Glu and TG decreased dramatically in 100, 300
and 900 µg/mL groups, and T-CHO levels decreased in all LNT treated groups.
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Figure 4. Effects of LNT exposure on the Glu, TG and T-CHO levels in larval zebrafish. (A) TG
content; (B) T-CHO content, (C) GLU content. Each group n = 4. All data were compared with the
control group, *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.5. Effects of LNT Exposure on the Genes Involved in Glucose, Lipid and Cholesterol Metabolism
in Larval Zebrafish

To elucidate the mechanism underlying the decrease in glucose, triglyceride, and
cholesterol induced by LNT, the mRNA levels of the genes involved in the metabolism
of these substances were quantified using qRT-PCR. The results from Figure 5A showed
that the expression of Hexokinase (HK1) increased significantly after being treated with
300 and 900 µg/mL of LNT. On the contrary, the mRNA levels of pyruvate kinase (PK) in the
30, 300, and 900 µg/mL groups were lower than that in the control group. Additionally, the
transcription level of cytosolic phosphoenolpyruvate carboxy kinase (PEPCK-C) decreased
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significantly in the 900 µg/mL group. These results suggest that LNT exposure affected the
genes related to glucose metabolism.
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Figure 5. Effects of LNT on the mRNA levels of metabolism-related genes in larval zebrafish.
(A) Genes related to glucose metabolism; (B) genes related to lipid metabolism; (C) genes related to
cholesterol metabolism. Each group n = 6. All data were compared with the control group, *, p < 0.05;
**, p < 0.01; ***, p < 0.001.

In addition, the transcription levels of the genes involved in the lipid metabolism pro-
cess were also disrupted by LNT exposition. The mRNA levels of peroxisome proliferator-
activated receptor-α (PPAR-α), sterol regulatory element binding protein 1α (SREBP1α),
fatty acid synthase (FAS), acyl-oxidase (ACO), and apolipoprotein A-IV (Apo) were down-
regulated after being treated with 900 µg/mL of LNT (Figure 5B). The mRNA levels of
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fatty acid binding protein 6 (FABP6) decreased in both the 300 and 900 µg/mL groups.
Nevertheless, the transcription of carnitine palmitoyl transferase 1 (CPT1) was induced by
300 and 900 µg/mL of LNT (Figure 5B).

Finally, hydroxymethyl glutaryl coenzyme A reductase a (HMGCRa), HMGCRb, low-
density lipoprotein receptor (LDLR) and cholesterol 7α-hydroxylase (CYP7A1), the genes
related to the cholesterol metabolism, were quantified. The results showed that 900 µg/mL
of LNT markedly inhibited the expressions of LDLR and CYP7A1 (Figure 5C). HMGCRa
and HMGCRb were not affected by LNT.

4. Discussion

Natural medicines and functional foods derived from natural products, such as plants
and fungi, are of huge value to humans. Compared to synthetic compounds, natural
products are supposed to be lower toxic to the receivers [42]. In addition, one natural
product contains diverse bioactive components, which may enhance the efficacy due to
the synergistic effect [43]. In recent decades, comprehensive studies on natural products
have been conducted in many countries, examining various aspects including preparation,
bioavailability, and bioactivity. Glucans are products that are used as both medicines
and functional foods. However, compared with the research evaluating their function
and efficacy, adequate safety assessments are far from sufficient. Therefore, the present
study was conducted to evaluate the toxicity and the underlying mechanism of high
concentrations of LNT on larval zebrafish. Our results demonstrated that LNT exposure
inhibited the development of larval zebrafish and caused morphological and locomotor
defects. The glucose, triglyceride, and cholesterol levels were significantly decreased in
the LNT treated groups. Further qRT-PCR assays revealed that transcriptions of the genes
involved in glucose, lipid, and cholesterol metabolism were disrupted by LNT.

After being established as a model organism, zebrafish embryos have been widely
used in scientific research, especially in toxicology [44]. The Organization for Economic
Co-operation and Development (OECD) adopted the Fish Embryo Acute Toxicity (FET)
Test as a method for the testing of chemicals in 2013 [36], which greatly promoted the use
of zebrafish embryos for safety assessment. Recently, Wan-Mohtar et al. investigated the
toxicity of the polysaccharides extracted from European Ganoderma applanatum mushrooms,
and reported that the LC50 of exopolysaccharide (EPS) and endopolysaccharide (ENS)
were 1410 and 870 µg/mL respectively [45]. Here, the half-lethal concentration of LNT
at 96 h was demonstrated to be 1228 µg/mL (Figure 1A), suggesting that the toxicities
of glucans differ by species and even by portions. From another view, these results also
reinforced that the FET test is a reliable and sensitive method to assess the safety of natural
product extracts.

The hatching rate was not significantly affected by LNT at concentrations of 30, 100,
300, and even 900 µg/mL. Interestingly, several other studies also suggested that the
glucans appear to have little effect on the hatching rate of embryos at concentrations
lower than 1000 µg/mL [45,46]. However, different degrees of morphological defects
were observed in the larval zebrafish, manifesting as short body length, slow blood flow
velocity, small eyes and swim bladder, and yolk sac edema, which could be summarized as
developmental retardation [47]. It is well known that energy is essential for living organisms
to carry out activities such as growth, development, movement, and reproduction [48]. We
hypothesized that the energy balance might be disrupted by LNT in the zebrafish embryos.
Indeed, the levels of glucose, triglyceride, and cholesterol were significantly lower in the
LNT treated groups. The LNT induced growth retardation but did not affect the hatching
rate, suggesting that the zebrafish embryos are more resistant to LNT than the larvae, which
may attribute to the protective effect of the chorion [49].

Locomotor activity plays a crucial role in the survival of animals, because it has
been closely related to migration and predator avoidance [50,51]. It is well known that
locomotor activity is influenced by several factors, such as the nervous system, feeding,
and growth [50]. Altered locomotor activity has been used as an indicator for investigating
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neurotoxicity, developmental toxicity and some diseases [52]. Here, we observed that
LNT exposure remarkably inhibited the locomotor activity in larval zebrafish (Figure 3).
Combined with the abnormal morphological changes, all these results suggest that LNT
adversely affected the growth of larval zebrafish in the early stage. In addition, because
movement is an energy cost behavior, the decrease in glucose, lipid, and cholesterol induced
by LNT also could directly affect the locomotor activity of zebrafish larvae.

Without any doubt, the nutrients, such as glucose and lipids, are the foundation of
development for all organisms [53]. Hence, the contents of these substances were measured
in the larval zebrafish at 5 dpf. In accordance with our hypothesis, the glucose, triglyceride,
and cholesterol levels were dramatically downregulated by LNT (Figure 4). Indeed, it was
reported that β-glucans from different sources reduced the blood glucose level in both
healthy and diabetic individuals [54–56]. In a mouse model, the β-glucan from barley was
demonstrated to have the potential to reduce blood glucose and serum lipid [56]. Further
investigation revealed that the genes involved in lipid metabolism were significantly altered
after the β-glucan treatment [57]. Similarly, several key genes related to glucose and lipid
metabolism were found to be regulated by LNT in the present study. HK, the initial enzyme
in the glycolysis pathway [58], was induced by LNT. On the contrary, PEPCK-C, the key
enzyme in glucose synthesis [59], was suppressed at the transcription level by LNT. These
results indicated that the consumption of glucose was increased, while the production of
glucose was decreased. As a consequence, the glucose content reduced significantly in the
larval zebrafish. Interestingly, PK, the enzyme involved in the last step of glycolysis [60],
was inhibited at the transcription level by LNT, which may lead to a deficiency in energy.
In addition, LNT suppressed the expression of genes involved in lipid synthesis, such as
SREBP1α and FAS, and enhanced the expression of genes related to catabolism of lipids,
like CPT1. Similar results were observed in a previous study [57], showing that barley
β-glucan induced the expression of CPT1 and reduced the expression of SREBP1α.

The cholesterol-lowering effect of β-glucan has been demonstrated in humans and
animal models previously and different mechanisms were elucidated [61–63]. For instance,
by-products of β-glucan digestion were reported to affect the synthesis of cholesterol [64].
Moreover, metabolism and circulation of bile acid were also influenced by β-glucan, which
may be responsible for the lowering of cholesterol [63]. Our results showed that HMGCRa
and HMGCRb, two key genes involved in cholesterol synthesis, were not altered by LNT.
Whereas, the mRNA level of CYP7A1 was significantly inhibited by LNT, indicating that
LNT regulated the cholesterol through the bile acid system, instead of direct regulation of
cholesterol synthesis. However, the detailed mechanism remains unclear.

LNT has been tested in several clinical trials. For instance, LNT significantly prolonged
the survival of gastric cancer patients treated with fluoropyrimidine-based chemotherapy.
The ratio of granulocytes/lymphocytes was enhanced by LNT in the patients receiving LNT
compared to the individuals with chemotherapy alone, supporting the immunomodulatory
effect of LNT [65]. A meta-analysis also suggested that LNT prolonged the survival of
advanced gastric cancer patients treated with standard chemotherapy [66]. The beneficial
effects of β-glucans from mushrooms on the cardio-metabolic system have been reported
in in vitro and animal experiments, with different mechanisms which were not completely
understood [67,68]. However, the data from humans supporting the beneficial effect of LNT
on lipid and cholesterol metabolism is scarce. A clinical trial showed that an eight-week
intervention with β-glucans obtained from Shiitake mushrooms did not alter the lipid-
or cholesterol-related parameters in hypercholesterolemic subjects receiving β-glucans
or placebo [69]. Nevertheless, our results showed that LNT significantly affected the
metabolism of glucose, triglyceride, and cholesterol at both biochemical and transcriptional
levels. Although the exact reasons involved in the different results observed in humans and
zebrafish are still to be elucidated, several potential factors may have contributed to the
uncertain and inconsistent findings: (1) the type of subjects included in the studies (healthy,
hypercholesterolemic, and diabetic subjects); (2) the different mushroom species used as
the source of β-glucans; (3) different digestion processes in humans and zebrafish.
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5. Conclusions

LNT exposure had toxic effects on the zebrafish embryos. The 96 h LC50 value was
estimated to be 1228 µg/mL in the present study. LNT at the concentrations of 30, 100, 300,
and 900 µg/mL did not alter the hatching rate of embryos at 72 and 96 hpf. However, the
development of the embryos was impaired, which was evidenced by shortened body length,
slowed blood flow velocity, small eyes and swim bladder, and yolk sac edema. In addition,
the locomotor activity was also inhibited by LNT. Detection of the biochemical indexes and
the gene transcriptions revealed that LNT significantly disrupted the glucose, lipid, and
cholesterol metabolism, which might contribute to the LNT-induced energy deficiency. All
these results suggested that high concentrations of LNT induced developmental toxicity
in the zebrafish embryos, which can possibly be attributed to the disruption of energy
metabolism induced by LNT.
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